Answer
The function can be represented by the rule $y=(\frac{2}{3})^x$
Work Step by Step
Notice that the y-coordinates of the terms are equal to $\frac{2}{3}$ of the power of $x$.
$(1,\frac{2}{3}): \frac{2}{3}=(\frac{2}{3})^1$
$(2,\frac{4}{9}):\frac{4}{9}=(\frac{2}{3})^2$
$(3,\frac{8}{27}):\frac{8}{27}=(\frac{2}{3})^3$
$(4,\frac{16}{81}):\frac{16}{81}=(\frac{2}{3})^4$
$(5,\frac{32}{243}):\frac{32}{243}=(\frac{2}{3})^5$
Thus, the function can be represented by the rule $y=(\frac{2}{3})^x$