Answer
$s\lt\frac{11}{2}$
Work Step by Step
$\frac{4}{3}s-3\lt s+\frac{2}{3}-\frac{1}{3}s$
Combine like terms $\frac{4}{3}s-3\lt \frac{2}{3}s+\frac{2}{3}$
Subtract $\frac{2}{3}s$: $\frac{4}{3}s-\frac{2}{3}s-3\lt \frac{2}{3}s-\frac{2}{3}s+\frac{2}{3}$
Simplify: $\frac{2}{3}s-3\lt\frac{2}{3}$
Add 3 to both sides: $\frac{2}{3}s-3+3\lt\frac{2}{3}+3$
Simplify: $\frac{2}{3}s\lt\frac{2}{3}+\frac{9}{3}$
$\frac{2}{3}s\lt\frac{11}{3}$
Mulifply both sides by $\frac{3}{2}$: $\frac{2}{3}s\times\frac{3}{2}\lt\frac{11}{3}\times\frac{3}{2}$
Simplify: $s\lt\frac{11}{2}$