Answer
$a\geq-1$
Work Step by Step
$\frac{1}{4}+a\geq-\frac{3}{4}$
To get a on one side by itself, subtract $-\frac{1}{4}$:
$\frac{1}{4}+a-\frac{1}{4}\ge \:-\frac{3}{4}-\frac{1}{4}$
Simplfy:
$a\geq-\frac{3}{4}-\frac{1}{4}$
apply rule:$\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}$:
$a\geq\frac{-3-1}{4}$
$a\geq\frac{-4}{4}$
$a\geq-1$
Let's check:
$a=-1$
$-1\geq-1$
$true$
$a=2$
$2\geq-1$
$true$