Answer
358800
Work Step by Step
Use the formula of permutation: $_{n}$P$_{r}$=$\frac{n!}{(n-r)!}$. Plug in 26 for N and 4 for R:
$_{n}$P$_{r}$=$\frac{n!}{(n-r)!}$
$_{26}$P$_{4}$=$\frac{26!}{(26-4)!}$ -simplify-
$_{26}$P$_{4}$=$\frac{26!}{22!}$ -write using factorial-
$_{26}$P$_{4}$=$\frac{26*25*24*23*22*21*20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1}{22*21*20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1}$ -simplify-
$_{26}$P$_{4}$=358800