Answer
12144
Work Step by Step
This is a permutation problem since order and arrangement matter. Use the formula of permutation: $_{n}$P$_{r}$=$\frac{n!}{(n-r)!}$. Plug in 24 for N and 3 for R:
$_{n}$P$_{r}$=$\frac{n!}{(n-r)!}$
$_{24}$P$_{3}$=$\frac{24!}{(24-3)!}$ -simplify-
$_{24}$P$_{3}$=$\frac{24!}{21!}$ -write using factorial-
$_{24}$P$_{3}$=$\frac{24*23*22*21*20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1}{21*20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1}$ -simplify-
$_{24}$P$_{3}$=12144