Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 11 - Rational Expressions and Functions - 11-5 Solving Rational Equations - Got It? - Page 694: 5

Answer

$0$.

Work Step by Step

The given expression is $\Rightarrow \frac{x-4}{x^2-4}=\frac{-2}{x-2}$ Use the cross products property. $\Rightarrow (x-4)(x-2)=(x^2-4)(-2)$ Simplify. $\Rightarrow x^2-6x+8=-2x^2+8$ Arrange terms on one side. $\Rightarrow x^2-6x+8+2x^2-8=0$ Add like terms. $\Rightarrow 3x^2-6x=0$ Factor out $3x$. $\Rightarrow 3x(x-2)=0$ Use zero product property. $3x=0$ or $x-2=0$ Solve for $x$. $x=0$ or $x=2$ Check for $x=0$. $\Rightarrow \frac{0-4}{0^2-4}=\frac{-2}{0-2}$ $\Rightarrow \frac{-4}{-4}=\frac{-2}{-2}$ $\Rightarrow 1=1$ Check for $x=2$. $\Rightarrow \frac{2-4}{2^2-4}=\frac{-2}{2-2}$ $\Rightarrow \frac{-2}{4-4}=\frac{-2}{0}$ $\Rightarrow \frac{-2}{0}=\frac{-2}{0}$ Undefined. Hence, the solution is $x=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.