Answer
$ 4m^{2} + 2 - \frac{1}{m} - \frac{3}{5m^{2}}$
Work Step by Step
Given : $(20m^{3} + 10m^{2} -5m -3)\div 5m^{2}$
This becomes :
$\frac{20m^{3}}{5m^{2}} + \frac{10m^{2}}{5m^{2}} - \frac{5m}{5m^{2}} - \frac{3}{5m^{2}}$
(Using Distributive property)
$= 4m^{3-1} + 2m^{2-2} - 1m^{1-2} - \frac{3m^{0-2}}{5}$
(Becuase $\frac{a^{m}}{a^{n}} = a^{m-n}$)
$= 4m^{2} + 2m^{0} - m^{-1} -\frac{3m^{-2}}{5}$
$= 4m^{2} + 2 - \frac{1}{m} - \frac{3}{5m^{2}}$