Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 11 - Rational Expressions and Functions - 11-1 Simplifying Rational Expressions - Got It? - Page 666: 3

Answer

(a) Simplified form: $-1$; excluded value: $x \ne 2.5$ (b) Simplified form: $-y-4$; excluded value: $y \ne 4$ (c) Simplified form: $- \frac{3}{{2d + 1}}$; excluded values: $d \ne \frac{1}{3}$, $d \ne -\frac{1}{2}$ (d) Simplified form: $- \frac{3}{{2z + 2}}$; excluded values: $z \ne\pm 1$

Work Step by Step

(a) Factor out $-1$ from the denominator and then cancel the common factor $2x-5$. $$\begin{aligned}\frac{2x-5}{5-2x}&=\frac{2x-5}{-1(2x-5)}\\&=-1\end{aligned}$$ Set the denominator to zero. $$\begin{aligned}5 - 2x &= 0\\5 &= 2x\\x &= 2.5\end{aligned}$$ Therefore, the simplified form is $-1$ with $x \ne 2.5$. (b) Factor the numerator using the difference of squares formula and factor out $-1$ from the denominator, cancel the common factor $y-4$ and simplify. $$\begin{aligned}\frac{{{y^2} - 16}}{{4 - y}} &= \frac{{\left( {y - 4} \right)\left( {y + 4} \right)}}{{ - \left( {y - 4} \right)}}\\ &= \frac{{y + 4}}{{ - 1}}\\ &= - \left( {y + 4} \right)\\ &= - y - 4\end{aligned}$$ Set the denominator to zero. $$\begin{aligned}4 - y &= 0\\y &= 4\end{aligned}$$ Therefore, the simplified form is $-y-4$ with $y \ne 4$. (c) Factor out $-3$ from the numerator and factorize the denominator. $$\begin{aligned}\frac{{3 - 9d}}{{6{d^2} + d - 1}} &= \frac{{ - 3\left( {3d - 1} \right)}}{{6{d^2} + 3d - 2d - 1}}\\ &= \frac{{ - 3\left( {3d - 1} \right)}}{{3d\left( {2d + 1} \right) - 1\left( {2d + 1} \right)}}\\ &= \frac{{ - 3\left( {3d - 1} \right)}}{{\left( {3d - 1} \right)\left( {2d + 1} \right)}}\\ &= - \frac{3}{{2d + 1}}\end{aligned}$$ Set the denominator to zero. $$\begin{aligned}6{d^2} + d - 1 &= 0\\6{d^2} + 3d - 2d - 1 &= 0\\3d\left( {2d + 1} \right) - 1\left( {2d + 1} \right) &= 0\\\left( {3d - 1} \right)\left( {2d + 1} \right) &= 0\\d &= - \frac{1}{2},\frac{1}{3}\end{aligned}$$ Therefore, the simplified form is $- \frac{3}{{2d + 1}}$ with $d \ne \frac{1}{3}$ and $d \ne -\frac{1}{2}$. (d) Factor out $-1$ from the numerator and factorize the denominator using the difference of squares formula. $$\begin{aligned}\frac{{3 - 3z}}{{2{z^2} - 2}} &= \frac{{ - 3\left( {z - 1} \right)}}{{2\left( {{z^2} - 1} \right)}}\\ &= - \frac{{3\left( {z - 1} \right)}}{{2\left( {z - 1} \right)\left( {z + 1} \right)}}\\ &= - \frac{3}{{2\left( {z + 1} \right)}}\\ &= - \frac{3}{{2z + 2}}\end{aligned}$$ Set the denominator to zero. $$\begin{aligned}2{z^2} - 2 &= 0\\2\left( {{z^2} - 1} \right) &= 0\\2\left( {z - 1} \right)\left( {z + 1} \right) &= 0\\z &= \pm 1\end{aligned}$$ Therefore, the simplified form is $- \frac{3}{{2z + 2}}$ with $z \ne\pm 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.