Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 19 - Planar Kinetics of a Rigid Body: Impulse and Momentum - Section 19.4 - Eccentric Impact - Problems - Page 553: 51

Answer

$\theta=tan^{-1} \sqrt{\frac{7}{5}e}$

Work Step by Step

We can determine the required angle as follows: We know that $e=\frac{v_{s_2}-v_{b_2}}{v_{b_1}-v_{s_1}}$ $\implies =\frac{0-v_2sin\theta}{-v_1cos\theta-0}$ This simplifies to: $v_1=\frac{v_2tan\theta}{e}$ [eq(1)] Now, we apply the conservation of angular momentum $mv_{b_1}r_1=mv_{b_2}r_2+I\omega_2$ [eq(2)] As $I=\frac{2}{5} mr^2$ $\omega_2=\frac{v_2cos\theta}{r}$ $r_1=rsin\theta$ and $r_2=rcos\theta$ Now, from eq(2) $mv_1rsin\theta=\frac{2}{5} mr^2(\frac{v_2cos\theta}{r})+mv_2rcos\theta$ This simplifies to: $v_2=\frac{5}{7}v_1tan\theta$ [eq(3)] We plug in the known values from eq(3) into eq(1) to obtain: $v_1=\frac{\frac{5}{7}v_1tan\theta\times tan\theta}{e}$ This simplifies to: $\theta=tan^{-1} \sqrt{\frac{7}{5}e}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.