Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 17 - Planar Kinetics of a Rigid Body: Force and Acceleration - Section 17.1 - Mass Moment of Inertia - Problems - Page 419: 8

Answer

$I_y=\frac{2}{5}mr^2$

Work Step by Step

The required moment of inertia can be determined as follows: We know that $dV=\pi x^2 dy$ As $dm=\rho dV$ $\implies dm=\rho \pi x^2 dy$ Similarly $dI_y=\frac{1}{2}dmx^2$ $\implies dI_y=\frac{1}{2}(\rho \pi x^2 dy)x^2$ $\implies dI_y=\frac{1}{2}\pi \rho x^4 dy$ As $x^2=r^2-y^2$ $\implies dI_y=\frac{1}{2}\pi \rho (r^2-y^2)^2dy$ We integrate both sides to obtain: $I_y=\int d I_y$ $\implies I_y=\int_0 ^r \frac{1}{2} \pi \rho (r^2-y^2)^2dy$ $\implies I_y=\frac{\pi \rho}{2}[r^4y-\frac{2}{3}r^2y^3+\frac{y^5}{5}]_{0}^r$ $\implies I_y=\frac{4\pi \rho}{15}r^5$ [eq(1)] Similarly $m=\int dm=\int_0 ^r \pi \rho x^2 dy$ $\implies m=\int _0 ^r \pi \rho (r^2-y^2)dy$ $\implies m=\frac{2}{3} \pi \rho r^3$ We plug in this value in eq(1) to obtain: $I_y=\frac{2}{5}mr^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.