Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 16 - Planar Kinematics of a Rigid Body - Section 16.5 - Relative-Motion Analysis: Velocity - Problems - Page 358: 76

Answer

$\omega_{AB}=3.72rad/s$

Work Step by Step

The required angular velocity can be determined as follows: $\vec{v_B}=\vec{v_c}+\vec{\omega_{BC}\times \vec{r_{BC}}}~~~$[eq(1)] As $\vec{v_C}=\vec{\omega_{CD}\times \vec{r_{CD}}}$ $\implies \vec{v_C}=5\hat k\times (-4cos45\hat i+4sin45\hat j)=-14.142\hat j-14.142\hat i$ Similarly, $\vec{r_{B/C}}=8sin30\hat i+8cos30\hat j=4\hat i+6.928\hat j$ The velocity of $B$ can be defined as $\vec{v_B}=\vec{\omega_{AB}}\times \vec{r_{B/A}}=-\omega_{AB}\hat k\times (6\hat i)=-6\omega_{AB}\hat j$ We plug in the known values in eq(1) to obtain: $-6\omega_{AB}\hat j=(-14.142\hat j-14.142\hat i)+(\omega_{BC})\hat k\times (4\hat i+6.928\hat j)$ $\implies -6\omega_{AB}\hat j=(-14.142-6.928\omega_{BC})\hat i+(-14.142+4\omega_{BC})\hat j$ Comparing $i$ components on both sides, we obtain: $0=-14.142-6.928\omega_{BC}$ $\implies \omega_{BC}=-2.0412rad/s$ Now comparing $j$ components, we obtain: $-6\omega_{AB}=-14.142+4\omega_{BC}=-14.142+4(-2.0412)$ This simplifies to: $\omega_{AB}=3.72rad/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.