Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 16 - Planar Kinematics of a Rigid Body - Section 16.5 - Relative-Motion Analysis: Velocity - Problems - Page 357: 68

Answer

$v_C=2.45m/s$ $\omega_{BC}=7.81rad/s$

Work Step by Step

The required can be determined velocity and angular velocity follows: $v_B=\omega_{AB}r_{AB}=4(0.5)=2m/s$ We know that in Cartesian coordinates $v_B=(-2cos30\hat i+2sin30 \hat j)m/s$ and $v_C=-v_C cos45\hat i-v_C sin45\hat j$ As $v_C=v_B+\omega\times r_{C/B}$ We plug in the known values to obtain: $-v_Ccos45\hat i-v_Csin45\hat j=(-2cos30\hat i+2sin30\hat j)+(\omega_{BC}\hat k)(-0.35\hat i)$ This can be rearranged as: $-v_Ccos45\hat i-v_Csin45\hat j=-2cos30\hat i+(2sin30-0.35\omega_{BC})\hat j$ Comparing $i$ components on both sides, we obtain: $-v_c cos45=_2cos30$ $\implies v_C=2.45m/s$ and comparing $j$ components on both sides, we obtain: $-2.45 sin45=2sin30-0.35\omega_{BC}$ This simplifies to: $\omega_{BC}=7.81rad/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.