Answer
$I_c=6.55\times 10^{-3}N\cdot s$
$I_u=6.05\times 10^{-3}N\cdot s$
Work Step by Step
The impulse for CONFOR foam can be determined as
$I_c=\int Fdt$
We plug in the known values to obtain:
$I_c=[\frac{1}{2}(2)(0.5)+\frac{1}{2}(0.5+0.8)(7-2)+\frac{1}{2}(0.8)(14-7)]\times 10^{-3}$
$\implies I_c=6.55\times 10^{-3}N\cdot s$
Now the impulse for Urethane foam can be calculated as
$I_u=\int Fdt$
We plug in the known values to obtain:
$I_u=[\frac{1}{2}(4)(0.3)+\frac{1}{2}(1.2+0.3)(7-4)+\frac{1}{2}(1.2+0.4)(10-7)+\frac{1}{2}(14-10)(0.4)]\times 10^{-3}$
$\implies I_u=6.05\times 10^{-3}N\cdot s$