Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 12 - Kinematics of a Particle - Section 12.6 - Motion of a Projectile - Problems - Page 50: 80

Answer

$v_x=v_0[1+(\frac{\pi}{L}c)^2\cos^2(\frac{\pi}{L}x)]^{-\frac{1}{2}}$ $v_y=\frac{v_0\pi c}{L}(\cos \frac{\pi}{L}x)[1+(\frac{\pi}{L}c)^2\cos^2(\frac{\pi}{L}x)]^{-\frac{1}{2}}$

Work Step by Step

$y=c\sin(\frac{\pi}{L}x)$ $\dot{y}=\frac{\pi}{L}c(\cos \frac{\pi}{L}x)\dot{x}$ $v_y=\frac{\pi}{L}cv_x(\cos \frac{\pi}{L}x)$ $v_0^2=v_y^2+v_x^2$ $v_0^2=v_x^2[1+(\frac{\pi}{L}c)^2\cos^2(\frac{\pi}{L}x)]$ $v_x=v_0[1+(\frac{\pi}{L}c)^2\cos^2(\frac{\pi}{L}x)]^{-\frac{1}{2}}$ $v_y=\frac{v_0\pi c}{L}(\cos \frac{\pi}{L}x)[1+(\frac{\pi}{L}c)^2\cos^2(\frac{\pi}{L}x)]^{-\frac{1}{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.