Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 11 - Virtual Work - Section 11.7 - Stability of Equilibrium Configuration - Problems - Page 608: 37

Answer

$\theta=51.2^{\circ}$ stale equilibrium, $\theta=4.71^{\circ}$ unstable equilibrium

Work Step by Step

The required angle $\theta$ can be determined as follows: According to the potential energy equation $V=V_g+V_e=Wy+\frac{1}{2}ks^2$ $\implies V=2(10)(9.81)sin\theta+\frac{1}{2}(1.5)(1000cos\theta-600)^2$ At equilibrium, $\frac{dV}{d\theta}=0$ $\implies \frac{d[2(10)(9.81)sin\theta+\frac{1}{2}(1.5)(1000cos\theta-600)^2]}{d\theta}=0$ $\implies \frac{dV}{d\theta}=49050cos\theta-1500sin\theta(1000cos\theta-600)=0$ This simplifies to: $\theta_1=51.2^{\circ}$ and $\theta_2=4.71^{\circ}$ Now, $\frac{d^2V}{d\theta}=-49050sin\theta-1500[cos51.2 \cdot (100(51.2)-600-1000 sin51.2^{\circ})^2]=848778.726\gt 0$ which implies stable equilibrium. For $\theta_2=4.71^{\circ}$ $\implies \frac{d^2V}{d\theta^2}=-49050sin(4.71)-1500[cos(4.71)(1000cos (4.71)-600)-1000 sin 4.71)^2]=-586820.2\lt 0$ which implies unstable equilibrium.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.