Answer
The four separate cases are
$\overline{a} \cdot \overline{b} \cdot \overline{c} \quad \overline{a} \cdot b \cdot \overline{c} \quad \overline{a} \cdot b \cdot \mathrm{c}$
Combining them by using the OR operator produces the following
Boolean expression:
$\overline{a} \cdot \overline{b} \cdot \overline{c}+\overline{a} \cdot b \cdot \overline{c}+\overline{a} \cdot b \cdot c+a \cdot b \cdot \overline{c}$
When this Boolean expression is represented as a Boolean diagram, it
appears as follows:
$$continue\ solution\ by\ seeing \ the\ following\ image:$$
Work Step by Step
The four separate cases are
$\overline{a} \cdot \overline{b} \cdot \overline{c} \quad \overline{a} \cdot b \cdot \overline{c} \quad \overline{a} \cdot b \cdot \mathrm{c}$
Combining them by using the OR operator produces the following
Boolean expression:
$\overline{a} \cdot \overline{b} \cdot \overline{c}+\overline{a} \cdot b \cdot \overline{c}+\overline{a} \cdot b \cdot c+a \cdot b \cdot \overline{c}$
When this Boolean expression is represented as a Boolean diagram, it
appears as follows:
$$continue\ solution\ by\ seeing \ the\ following\ image:$$