Answer
Let $f(n) = 1+2+3+...+n,$ then the recursive definition will be
$f(1) = 1;$
$f(n) = n+f(n-1); n>=1$
Work Step by Step
(1) $f(n) = 1+2+3+...+n-1+n $
Also
(2) $f(n-1) = 1+2+3+...+n-1$
Replacing $1+2+3+...+n-1$ by $f(n-1)$ from equation 2 in equation 1 we get
$f(n) = n+f(n-1); n>=1$